Skip to contents

Determine maximum growth rates from log-linear part of the growth curve for a series of experiments.

Usage

all_easylinear(...)

# S3 method for class 'formula'
all_easylinear(formula, data, h = 5, quota = 0.95, subset = NULL, ...)

# S3 method for class 'data.frame'
all_easylinear(
  data,
  grouping,
  time = "time",
  y = "value",
  h = 5,
  quota = 0.95,
  ...
)

Arguments

...

generic parameters, reserved for future extensions.

formula

model formula specifying dependent, independent and grouping variables in the form: dependent ~ independent | group1 + group2 + ....

data

data frame of observational data.

h

with of the window (number of data).

quota

part of window fits considered for the overall linear fit (relative to max. growth rate).

subset

a specification of the rows to be used: defaults to all rows.

grouping

model formula or character vector of criteria defining subsets in the data frame.

time

character vectors with name independent variabl.e.

y

character vector with name of dependent variable

Value

object with parameters of all fits.

References

Hall, BG., Acar, H, Nandipati, A and Barlow, M (2014) Growth Rates Made Easy. Mol. Biol. Evol. 31: 232-38, doi:10.1093/molbev/mst187

See also

Examples


# \donttest{
library("growthrates")
L <- all_easylinear(value ~ time | strain + conc + replicate, data=bactgrowth)
summary(L)
#> $`D:0:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5        6 
#>  0.02113 -0.03716 -0.03727  0.04552  0.06376 -0.05598 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.39425    0.06429  -68.35 2.74e-07 ***
#> x            0.20490    0.01336   15.34 0.000105 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.05587 on 4 degrees of freedom
#> Multiple R-squared:  0.9833,	Adjusted R-squared:  0.9791 
#> F-statistic: 235.3 on 1 and 4 DF,  p-value: 0.0001053
#> 
#> 
#> $`R:0:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5        6 
#>  0.05031 -0.05184 -0.05683  0.01537  0.09554 -0.05255 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.72947    0.06677  -70.84 2.38e-07 ***
#> x            0.25630    0.01714   14.95 0.000117 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.07172 on 4 degrees of freedom
#> Multiple R-squared:  0.9824,	Adjusted R-squared:  0.978 
#> F-statistic: 223.5 on 1 and 4 DF,  p-value: 0.0001166
#> 
#> 
#> $`T:0:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5 
#> -0.001025 -0.002789 -0.027026  0.066520 -0.035679 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -5.13267    0.06215  -82.59 3.91e-06 ***
#> x            0.31192    0.01465   21.29 0.000227 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.04632 on 3 degrees of freedom
#> Multiple R-squared:  0.9934,	Adjusted R-squared:  0.9912 
#> F-statistic: 453.4 on 1 and 3 DF,  p-value: 0.0002266
#> 
#> 
#> $`D:0.24:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>          1          2          3          4          5 
#> -7.669e-05 -1.408e-02 -3.848e-04  4.333e-02 -2.878e-02 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.21928    0.05113  -82.52 3.92e-06 ***
#> x            0.18990    0.00984   19.30 0.000304 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.03112 on 3 degrees of freedom
#> Multiple R-squared:  0.992,	Adjusted R-squared:  0.9893 
#> F-statistic: 372.4 on 1 and 3 DF,  p-value: 0.0003039
#> 
#> 
#> $`R:0.24:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5         6 
#>  0.001099 -0.011307  0.012425 -0.004436  0.011329 -0.009110 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.263086   0.034202 -124.64 2.48e-08 ***
#> x            0.053229   0.002711   19.63 3.97e-05 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.01134 on 4 degrees of freedom
#> Multiple R-squared:  0.9897,	Adjusted R-squared:  0.9872 
#> F-statistic: 385.5 on 1 and 4 DF,  p-value: 3.968e-05
#> 
#> 
#> $`T:0.24:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5        6 
#>  0.05437 -0.05759 -0.05606  0.02914  0.06841 -0.03827 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.44178    0.07370  -60.27 4.54e-07 ***
#> x            0.21205    0.01531   13.85 0.000158 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.06405 on 4 degrees of freedom
#> Multiple R-squared:  0.9796,	Adjusted R-squared:  0.9745 
#> F-statistic: 191.8 on 1 and 4 DF,  p-value: 0.0001576
#> 
#> 
#> $`D:0.49:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5        6 
#>  0.02771 -0.05023 -0.05527  0.10339  0.02140 -0.04700 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -3.67930    0.08075 -45.564 1.39e-06 ***
#> x            0.13510    0.01678   8.052  0.00129 ** 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.07018 on 4 degrees of freedom
#> Multiple R-squared:  0.9419,	Adjusted R-squared:  0.9274 
#> F-statistic: 64.84 on 1 and 4 DF,  p-value: 0.001291
#> 
#> 
#> $`R:0.49:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>       Min        1Q    Median        3Q       Max 
#> -0.011759 -0.008320  0.001372  0.008141  0.009857 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.949090   0.012094 -409.23 1.44e-14 ***
#> x            0.134500   0.001542   87.22 1.53e-10 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.009994 on 6 degrees of freedom
#> Multiple R-squared:  0.9992,	Adjusted R-squared:  0.9991 
#> F-statistic:  7607 on 1 and 6 DF,  p-value: 1.53e-10
#> 
#> 
#> $`T:0.49:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5 
#>  0.003371 -0.019480 -0.008315  0.061583 -0.037160 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.92841    0.05814  -84.77 3.62e-06 ***
#> x            0.29112    0.01370   21.24 0.000228 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.04333 on 3 degrees of freedom
#> Multiple R-squared:  0.9934,	Adjusted R-squared:  0.9912 
#> F-statistic: 451.3 on 1 and 3 DF,  p-value: 0.0002282
#> 
#> 
#> $`D:0.98:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5 
#>  0.03455 -0.05987 -0.04096  0.12332 -0.05704 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -5.09252    0.12227  -41.65 3.05e-05 ***
#> x            0.31756    0.02882   11.02   0.0016 ** 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.09113 on 3 degrees of freedom
#> Multiple R-squared:  0.9759,	Adjusted R-squared:  0.9679 
#> F-statistic: 121.4 on 1 and 3 DF,  p-value: 0.001601
#> 
#> 
#> $`R:0.98:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5         6 
#>  0.008955 -0.017095  0.013025 -0.024859  0.034249 -0.014274 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.94295    0.05811  -85.07 1.14e-07 ***
#> x            0.09504    0.00602   15.79 9.40e-05 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.02518 on 4 degrees of freedom
#> Multiple R-squared:  0.9842,	Adjusted R-squared:  0.9803 
#> F-statistic: 249.3 on 1 and 4 DF,  p-value: 9.404e-05
#> 
#> 
#> $`T:0.98:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5        6 
#>  0.07048 -0.02981 -0.08960 -0.03388  0.10342 -0.02060 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -5.08196    0.07527  -67.51 2.88e-07 ***
#> x            0.30095    0.01933   15.57 9.93e-05 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.08086 on 4 degrees of freedom
#> Multiple R-squared:  0.9838,	Adjusted R-squared:  0.9797 
#> F-statistic: 242.4 on 1 and 4 DF,  p-value: 9.933e-05
#> 
#> 
#> $`D:1.95:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5 
#>  0.03961 -0.06832 -0.06293  0.17238 -0.08074 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -5.12463    0.16691 -30.703 7.59e-05 ***
#> x            0.33108    0.03934   8.416  0.00352 ** 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.1244 on 3 degrees of freedom
#> Multiple R-squared:  0.9594,	Adjusted R-squared:  0.9458 
#> F-statistic: 70.82 on 1 and 3 DF,  p-value: 0.00352
#> 
#> 
#> $`R:1.95:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>       Min        1Q    Median        3Q       Max 
#> -0.017386 -0.009382  0.003171  0.004679  0.021066 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -5.011950   0.022290 -224.85 5.22e-13 ***
#> x            0.095080   0.002074   45.84 7.22e-09 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.01344 on 6 degrees of freedom
#> Multiple R-squared:  0.9972,	Adjusted R-squared:  0.9967 
#> F-statistic:  2101 on 1 and 6 DF,  p-value: 7.219e-09
#> 
#> 
#> $`T:1.95:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5        6 
#>  0.07448 -0.03023 -0.09412 -0.04469  0.12026 -0.02570 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.96669    0.08384  -59.24 4.86e-07 ***
#> x            0.28704    0.02153   13.33 0.000183 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.09006 on 4 degrees of freedom
#> Multiple R-squared:  0.978,	Adjusted R-squared:  0.9725 
#> F-statistic: 177.8 on 1 and 4 DF,  p-value: 0.0001829
#> 
#> 
#> $`D:3.91:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5 
#>  0.04145 -0.05891 -0.04846  0.10785 -0.04193 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -5.00026    0.11205  -44.62 2.48e-05 ***
#> x            0.30800    0.02641   11.66  0.00135 ** 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.08352 on 3 degrees of freedom
#> Multiple R-squared:  0.9784,	Adjusted R-squared:  0.9712 
#> F-statistic:   136 on 1 and 3 DF,  p-value: 0.001355
#> 
#> 
#> $`R:3.91:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>          1          2          3          4          5          6 
#>  0.0071323 -0.0137318  0.0160051 -0.0141904 -0.0003689  0.0051537 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.875698   0.037381 -130.43 2.07e-08 ***
#> x            0.081489   0.003215   25.34 1.44e-05 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.01345 on 4 degrees of freedom
#> Multiple R-squared:  0.9938,	Adjusted R-squared:  0.9923 
#> F-statistic: 642.3 on 1 and 4 DF,  p-value: 1.439e-05
#> 
#> 
#> $`T:3.91:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5         6 
#>  0.056140 -0.041372 -0.033524 -0.041424  0.068207 -0.008028 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.94114    0.05187  -95.25 7.28e-08 ***
#> x            0.27983    0.01332   21.01 3.03e-05 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.05572 on 4 degrees of freedom
#> Multiple R-squared:  0.991,	Adjusted R-squared:  0.9888 
#> F-statistic: 441.4 on 1 and 4 DF,  p-value: 3.034e-05
#> 
#> 
#> $`D:7.81:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5 
#>  0.04370 -0.06193 -0.06219  0.13537 -0.05495 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.81930    0.13628 -35.362 4.97e-05 ***
#> x            0.28795    0.03212   8.964  0.00293 ** 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.1016 on 3 degrees of freedom
#> Multiple R-squared:  0.964,	Adjusted R-squared:  0.952 
#> F-statistic: 80.36 on 1 and 3 DF,  p-value: 0.00293
#> 
#> 
#> $`R:7.81:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>       Min        1Q    Median        3Q       Max 
#> -0.016088 -0.008101  0.002653  0.005409  0.019049 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.90382    0.02074 -236.46 3.86e-13 ***
#> x            0.09002    0.00193   46.65 6.50e-09 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.01251 on 6 degrees of freedom
#> Multiple R-squared:  0.9973,	Adjusted R-squared:  0.9968 
#> F-statistic:  2176 on 1 and 6 DF,  p-value: 6.5e-09
#> 
#> 
#> $`T:7.81:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5 
#>  0.03653 -0.03329 -0.09296  0.13967 -0.04995 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -5.16836    0.14090 -36.681 4.46e-05 ***
#> x            0.31098    0.03321   9.364  0.00258 ** 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.105 on 3 degrees of freedom
#> Multiple R-squared:  0.9669,	Adjusted R-squared:  0.9559 
#> F-statistic: 87.69 on 1 and 3 DF,  p-value: 0.002579
#> 
#> 
#> $`D:15.63:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5        6 
#>  0.03819 -0.08467 -0.06913  0.18531 -0.01552 -0.05419 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.81968    0.12982 -37.127 3.14e-06 ***
#> x            0.25639    0.02697   9.506 0.000684 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.1128 on 4 degrees of freedom
#> Multiple R-squared:  0.9576,	Adjusted R-squared:  0.947 
#> F-statistic: 90.37 on 1 and 4 DF,  p-value: 0.0006835
#> 
#> 
#> $`R:15.63:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>          1          2          3          4          5          6 
#> -0.0008624 -0.0009698 -0.0111276  0.0112378  0.0190986 -0.0173765 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -5.071201   0.045700 -110.97 3.95e-08 ***
#> x            0.105468   0.003622   29.12 8.28e-06 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.01515 on 4 degrees of freedom
#> Multiple R-squared:  0.9953,	Adjusted R-squared:  0.9941 
#> F-statistic: 847.7 on 1 and 4 DF,  p-value: 8.284e-06
#> 
#> 
#> $`T:15.63:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5         6 
#> -0.025215 -0.068095  0.180830 -0.062721 -0.018590 -0.006208 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -5.41597    0.14155 -38.261 2.79e-06 ***
#> x            0.24355    0.02458   9.909 0.000582 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.1028 on 4 degrees of freedom
#> Multiple R-squared:  0.9609,	Adjusted R-squared:  0.9511 
#> F-statistic: 98.18 on 1 and 4 DF,  p-value: 0.0005823
#> 
#> 
#> $`D:31.25:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5         6 
#>  0.039057 -0.032029 -0.031757 -0.005204  0.038508 -0.008576 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -5.522745   0.082737  -66.75 3.02e-07 ***
#> x            0.238139   0.008572   27.78 9.99e-06 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.03586 on 4 degrees of freedom
#> Multiple R-squared:  0.9948,	Adjusted R-squared:  0.9936 
#> F-statistic: 771.8 on 1 and 4 DF,  p-value: 9.985e-06
#> 
#> 
#> $`R:31.25:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>          1          2          3          4          5          6 
#>  0.0035192 -0.0193741  0.0294765 -0.0146190  0.0007089  0.0002885 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.963300   0.026399 -188.01 4.80e-09 ***
#> x            0.118203   0.004584   25.79 1.34e-05 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.01918 on 4 degrees of freedom
#> Multiple R-squared:  0.994,	Adjusted R-squared:  0.9925 
#> F-statistic: 664.9 on 1 and 4 DF,  p-value: 1.344e-05
#> 
#> 
#> $`T:31.25:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5         6         7 
#>  0.032700 -0.032491 -0.024069  0.008003  0.017211  0.004100 -0.005454 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -6.667356   0.066666 -100.01 1.89e-09 ***
#> x            0.247512   0.004714   52.51 4.74e-08 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.02494 on 5 degrees of freedom
#> Multiple R-squared:  0.9982,	Adjusted R-squared:  0.9978 
#> F-statistic:  2757 on 1 and 5 DF,  p-value: 4.738e-08
#> 
#> 
#> $`D:62.5:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5        6 
#>  0.01034 -0.00617 -0.01032 -0.00669  0.01731 -0.00447 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -5.423423   0.063975  -84.77 1.16e-07 ***
#> x            0.114152   0.002966   38.48 2.72e-06 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.01241 on 4 degrees of freedom
#> Multiple R-squared:  0.9973,	Adjusted R-squared:  0.9966 
#> F-statistic:  1481 on 1 and 4 DF,  p-value: 2.723e-06
#> 
#> 
#> $`R:62.5:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5 
#> -0.027990  0.031236 -0.002483  0.023220 -0.023983 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.913180   0.060395  -81.35 4.09e-06 ***
#> x            0.107828   0.009797   11.01  0.00161 ** 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.03098 on 3 degrees of freedom
#> Multiple R-squared:  0.9758,	Adjusted R-squared:  0.9678 
#> F-statistic: 121.1 on 1 and 3 DF,  p-value: 0.001606
#> 
#> 
#> $`T:62.5:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5         6 
#>  0.008565 -0.071112  0.049882  0.057217 -0.022459 -0.022093 
#> 
#> Coefficients:
#>             Estimate Std. Error  t value Pr(>|t|)    
#> (Intercept) -4.71910    0.03945 -119.620 2.93e-08 ***
#> x            0.07968    0.01303    6.115  0.00362 ** 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.05451 on 4 degrees of freedom
#> Multiple R-squared:  0.9034,	Adjusted R-squared:  0.8792 
#> F-statistic: 37.39 on 1 and 4 DF,  p-value: 0.003622
#> 
#> 
#> $`D:125:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5 
#> -0.007294  0.004016  0.007028  0.003071 -0.006821 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.681876   0.008003 -585.01 1.10e-08 ***
#> x            0.084000   0.002413   34.81 5.21e-05 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.007631 on 3 degrees of freedom
#> Multiple R-squared:  0.9975,	Adjusted R-squared:  0.9967 
#> F-statistic:  1212 on 1 and 3 DF,  p-value: 5.212e-05
#> 
#> 
#> $`R:125:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5         6 
#>  0.024298 -0.044181 -0.007299  0.019532  0.038064 -0.030415 
#> 
#> Coefficients:
#>              Estimate Std. Error  t value Pr(>|t|)    
#> (Intercept) -4.803308   0.034050 -141.067 1.51e-08 ***
#> x            0.068479   0.008743    7.832  0.00143 ** 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.03658 on 4 degrees of freedom
#> Multiple R-squared:  0.9388,	Adjusted R-squared:  0.9235 
#> F-statistic: 61.34 on 1 and 4 DF,  p-value: 0.001435
#> 
#> 
#> $`T:125:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5 
#> -0.006979  0.027046 -0.056712  0.060201 -0.023557 
#> 
#> Coefficients:
#>             Estimate Std. Error  t value Pr(>|t|)    
#> (Intercept) -4.82133    0.04044 -119.233  1.3e-06 ***
#> x            0.08376    0.01651    5.074   0.0148 *  
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.0522 on 3 degrees of freedom
#> Multiple R-squared:  0.8956,	Adjusted R-squared:  0.8608 
#> F-statistic: 25.74 on 1 and 3 DF,  p-value: 0.01479
#> 
#> 
#> $`D:250:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -0.03254 -0.01583 -0.01115  0.01002  0.05562 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.385786   0.024929 -175.93 2.28e-12 ***
#> x            0.065001   0.004937   13.17 1.18e-05 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.03199 on 6 degrees of freedom
#> Multiple R-squared:  0.9665,	Adjusted R-squared:  0.961 
#> F-statistic: 173.4 on 1 and 6 DF,  p-value: 1.185e-05
#> 
#> 
#> $`R:250:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5 
#> -0.01911 -0.01091  0.06034 -0.01151 -0.01881 
#> 
#> Coefficients:
#>             Estimate Std. Error  t value Pr(>|t|)    
#> (Intercept) -4.40374    0.03037 -145.004 7.23e-07 ***
#> x            0.07185    0.01240    5.795   0.0102 *  
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.03921 on 3 degrees of freedom
#> Multiple R-squared:  0.918,	Adjusted R-squared:  0.8906 
#> F-statistic: 33.58 on 1 and 3 DF,  p-value: 0.01022
#> 
#> 
#> $`T:250:1`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -0.05531 -0.01591  0.01044  0.01500  0.05691 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.586043   0.030760  -149.1 6.14e-12 ***
#> x            0.062109   0.006091    10.2 5.18e-05 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.03948 on 6 degrees of freedom
#> Multiple R-squared:  0.9454,	Adjusted R-squared:  0.9363 
#> F-statistic:   104 on 1 and 6 DF,  p-value: 5.184e-05
#> 
#> 
#> $`D:0:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5 
#> -0.02690 -0.06984  0.11315  0.09083 -0.10724 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.76605    0.18531 -25.719 0.000129 ***
#> x            0.27655    0.03566   7.754 0.004461 ** 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.1128 on 3 degrees of freedom
#> Multiple R-squared:  0.9525,	Adjusted R-squared:  0.9366 
#> F-statistic: 60.13 on 1 and 3 DF,  p-value: 0.004461
#> 
#> 
#> $`R:0:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5        6 
#>  0.05500 -0.05217 -0.06972  0.02605  0.09073 -0.04989 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.56440    0.06905  -66.10 3.14e-07 ***
#> x            0.24070    0.01773   13.57  0.00017 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.07417 on 4 degrees of freedom
#> Multiple R-squared:  0.9788,	Adjusted R-squared:  0.9734 
#> F-statistic: 184.3 on 1 and 4 DF,  p-value: 0.0001705
#> 
#> 
#> $`T:0:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5 
#>  0.03684 -0.03070 -0.03457  0.01388  0.01455 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.56724    0.03781 -120.78 1.25e-06 ***
#> x            0.26170    0.01140   22.95 0.000181 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.03605 on 3 degrees of freedom
#> Multiple R-squared:  0.9943,	Adjusted R-squared:  0.9925 
#> F-statistic: 526.9 on 1 and 3 DF,  p-value: 0.0001811
#> 
#> 
#> $`D:0.24:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5 
#>  0.022436 -0.020254 -0.022358  0.015734  0.004442 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.468380   0.038893 -114.89 1.45e-06 ***
#> x            0.209744   0.007485   28.02 9.98e-05 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.02367 on 3 degrees of freedom
#> Multiple R-squared:  0.9962,	Adjusted R-squared:  0.9949 
#> F-statistic: 785.2 on 1 and 3 DF,  p-value: 9.977e-05
#> 
#> 
#> $`R:0.24:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>       Min        1Q    Median        3Q       Max 
#> -0.013773 -0.005455  0.001812  0.004471  0.012121 
#> 
#> Coefficients:
#>               Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.2082601  0.0076499 -550.11  < 2e-16 ***
#> x            0.0430988  0.0005655   76.21 2.47e-16 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.007629 on 11 degrees of freedom
#> Multiple R-squared:  0.9981,	Adjusted R-squared:  0.9979 
#> F-statistic:  5809 on 1 and 11 DF,  p-value: 2.469e-16
#> 
#> 
#> $`T:0.24:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5        6 
#>  0.04376 -0.01805 -0.05928 -0.03032  0.09189 -0.02800 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.15735    0.05870  -70.83 2.38e-07 ***
#> x            0.20157    0.01507   13.37 0.000181 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.06305 on 4 degrees of freedom
#> Multiple R-squared:  0.9781,	Adjusted R-squared:  0.9727 
#> F-statistic: 178.9 on 1 and 4 DF,  p-value: 0.0001808
#> 
#> 
#> $`D:0.49:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5        6 
#>  0.06723 -0.14354 -0.09301  0.24174  0.03357 -0.10598 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -5.17264    0.18603 -27.805 9.95e-06 ***
#> x            0.29778    0.03865   7.704  0.00153 ** 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.1617 on 4 degrees of freedom
#> Multiple R-squared:  0.9369,	Adjusted R-squared:  0.9211 
#> F-statistic: 59.36 on 1 and 4 DF,  p-value: 0.001527
#> 
#> 
#> $`R:0.49:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>       Min        1Q    Median        3Q       Max 
#> -0.022325 -0.008193  0.003092  0.008815  0.014001 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.651420   0.009603 -484.37  < 2e-16 ***
#> x            0.074900   0.001351   55.43 1.25e-11 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.01227 on 8 degrees of freedom
#> Multiple R-squared:  0.9974,	Adjusted R-squared:  0.9971 
#> F-statistic:  3072 on 1 and 8 DF,  p-value: 1.246e-11
#> 
#> 
#> $`T:0.49:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5 
#>  0.043383 -0.033646 -0.053727  0.034863  0.009128 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.17220    0.05138  -81.20 4.12e-06 ***
#> x            0.21679    0.01549   13.99  0.00079 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.04899 on 3 degrees of freedom
#> Multiple R-squared:  0.9849,	Adjusted R-squared:  0.9799 
#> F-statistic: 195.8 on 1 and 3 DF,  p-value: 0.0007901
#> 
#> 
#> $`D:0.98:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5 
#>  0.07164 -0.08815 -0.09670  0.17129 -0.05808 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)  -5.1223     0.1816 -28.206 9.78e-05 ***
#> x             0.3139     0.0428   7.334  0.00524 ** 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.1354 on 3 degrees of freedom
#> Multiple R-squared:  0.9472,	Adjusted R-squared:  0.9296 
#> F-statistic: 53.79 on 1 and 3 DF,  p-value: 0.005237
#> 
#> 
#> $`R:0.98:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5         6 
#>  0.005913  0.001958 -0.006451 -0.018774  0.019504 -0.002150 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.785244   0.032994 -145.03 1.36e-08 ***
#> x            0.072948   0.003418   21.34 2.85e-05 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.0143 on 4 degrees of freedom
#> Multiple R-squared:  0.9913,	Adjusted R-squared:  0.9891 
#> F-statistic: 455.4 on 1 and 4 DF,  p-value: 2.851e-05
#> 
#> 
#> $`T:0.98:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5 
#>  0.039113 -0.034204 -0.042982  0.032121  0.005951 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.75842    0.04537 -104.88 1.91e-06 ***
#> x            0.29646    0.01368   21.67 0.000215 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.04326 on 3 degrees of freedom
#> Multiple R-squared:  0.9937,	Adjusted R-squared:  0.9915 
#> F-statistic: 469.6 on 1 and 3 DF,  p-value: 0.000215
#> 
#> 
#> $`D:1.95:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5        6 
#>  0.03662 -0.09391 -0.07322  0.19416  0.02388 -0.08753 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -5.02885    0.14261 -35.263 3.86e-06 ***
#> x            0.28469    0.02963   9.608 0.000656 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.1239 on 4 degrees of freedom
#> Multiple R-squared:  0.9585,	Adjusted R-squared:  0.9481 
#> F-statistic: 92.32 on 1 and 4 DF,  p-value: 0.0006559
#> 
#> 
#> $`R:1.95:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5 
#> -0.002388 -0.011156  0.019007  0.005008 -0.010471 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.133639   0.037114 -111.38  1.6e-06 ***
#> x            0.053219   0.004568   11.65  0.00136 ** 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.01445 on 3 degrees of freedom
#> Multiple R-squared:  0.9784,	Adjusted R-squared:  0.9712 
#> F-statistic: 135.7 on 1 and 3 DF,  p-value: 0.001359
#> 
#> 
#> $`T:1.95:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5 
#>  0.05249 -0.03618 -0.06307  0.02472  0.02204 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.44817    0.05789  -76.84 4.86e-06 ***
#> x            0.26051    0.01745   14.93 0.000653 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.05519 on 3 degrees of freedom
#> Multiple R-squared:  0.9867,	Adjusted R-squared:  0.9823 
#> F-statistic: 222.8 on 1 and 3 DF,  p-value: 0.0006526
#> 
#> 
#> $`D:3.91:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5 
#>  0.036831 -0.033926 -0.040464  0.035382  0.002177 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -5.17053    0.05693  -90.82 2.94e-06 ***
#> x            0.31192    0.01342   23.25 0.000174 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.04243 on 3 degrees of freedom
#> Multiple R-squared:  0.9945,	Adjusted R-squared:  0.9926 
#> F-statistic: 540.4 on 1 and 3 DF,  p-value: 0.0001744
#> 
#> 
#> $`R:3.91:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5 
#> -0.004041  0.002173  0.003932  0.001778 -0.003843 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.641333   0.010944  -424.1 2.89e-08 ***
#> x            0.062779   0.001347    46.6 2.18e-05 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.00426 on 3 degrees of freedom
#> Multiple R-squared:  0.9986,	Adjusted R-squared:  0.9982 
#> F-statistic:  2172 on 1 and 3 DF,  p-value: 2.175e-05
#> 
#> 
#> $`T:3.91:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5 
#>  0.046844 -0.037156 -0.057482  0.039056  0.008737 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.59370    0.05576  -82.38 3.94e-06 ***
#> x            0.27816    0.01681   16.54 0.000481 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.05317 on 3 degrees of freedom
#> Multiple R-squared:  0.9892,	Adjusted R-squared:  0.9855 
#> F-statistic: 273.7 on 1 and 3 DF,  p-value: 0.0004807
#> 
#> 
#> $`D:7.81:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5 
#>  0.05848 -0.08452 -0.07052  0.16070 -0.06413 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.57258    0.16518 -27.683 0.000103 ***
#> x            0.24836    0.03893   6.379 0.007799 ** 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.1231 on 3 degrees of freedom
#> Multiple R-squared:  0.9313,	Adjusted R-squared:  0.9085 
#> F-statistic: 40.69 on 1 and 3 DF,  p-value: 0.007799
#> 
#> 
#> $`R:7.81:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5 
#> -0.006984 -0.017367  0.035309  0.009422 -0.020379 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.958416   0.067989  -72.93 5.68e-06 ***
#> x            0.090425   0.008369   10.80   0.0017 ** 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.02646 on 3 degrees of freedom
#> Multiple R-squared:  0.9749,	Adjusted R-squared:  0.9666 
#> F-statistic: 116.7 on 1 and 3 DF,  p-value: 0.001696
#> 
#> 
#> $`T:7.81:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5 
#>  0.014918 -0.033567  0.000835  0.039361 -0.021547 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -3.78947    0.04492  -84.35 3.67e-06 ***
#> x            0.16627    0.01059   15.70 0.000561 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.03348 on 3 degrees of freedom
#> Multiple R-squared:  0.988,	Adjusted R-squared:  0.984 
#> F-statistic: 246.6 on 1 and 3 DF,  p-value: 0.0005614
#> 
#> 
#> $`D:15.63:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5        6 
#>  0.03705 -0.06309 -0.12273  0.23324 -0.03119 -0.05328 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -5.34919    0.16132 -33.160 4.93e-06 ***
#> x            0.30080    0.03352   8.975 0.000853 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.1402 on 4 degrees of freedom
#> Multiple R-squared:  0.9527,	Adjusted R-squared:  0.9409 
#> F-statistic: 80.55 on 1 and 4 DF,  p-value: 0.0008529
#> 
#> 
#> $`R:15.63:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>       Min        1Q    Median        3Q       Max 
#> -0.013772 -0.006886  0.001340  0.005031  0.021072 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.502916   0.010813 -416.43  < 2e-16 ***
#> x            0.060466   0.001205   50.17 2.76e-11 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.01095 on 8 degrees of freedom
#> Multiple R-squared:  0.9968,	Adjusted R-squared:  0.9964 
#> F-statistic:  2517 on 1 and 8 DF,  p-value: 2.758e-11
#> 
#> 
#> $`T:15.63:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5         6 
#>  0.029463 -0.015157 -0.044274  0.003571  0.038993 -0.012596 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -5.129049   0.047440 -108.12 4.39e-08 ***
#> x            0.252260   0.008237   30.62 6.77e-06 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.03446 on 4 degrees of freedom
#> Multiple R-squared:  0.9958,	Adjusted R-squared:  0.9947 
#> F-statistic: 937.8 on 1 and 4 DF,  p-value: 6.774e-06
#> 
#> 
#> $`D:31.25:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5         6 
#>  0.025175 -0.017801 -0.020285 -0.012617  0.031419 -0.005891 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -5.748082   0.058179  -98.80 6.29e-08 ***
#> x            0.243646   0.006028   40.42 2.24e-06 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.02521 on 4 degrees of freedom
#> Multiple R-squared:  0.9976,	Adjusted R-squared:  0.9969 
#> F-statistic:  1634 on 1 and 4 DF,  p-value: 2.238e-06
#> 
#> 
#> $`R:31.25:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5 
#>  0.004447 -0.017367  0.023877 -0.013442  0.002485 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -5.242152   0.060551  -86.58  3.4e-06 ***
#> x            0.101857   0.005995   16.99 0.000444 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.01896 on 3 degrees of freedom
#> Multiple R-squared:  0.9897,	Adjusted R-squared:  0.9863 
#> F-statistic: 288.6 on 1 and 3 DF,  p-value: 0.0004442
#> 
#> 
#> $`T:31.25:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5         6 
#>  0.021058 -0.023826 -0.010519 -0.001336  0.024241 -0.009618 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -6.282227   0.074112  -84.77 1.16e-07 ***
#> x            0.191488   0.005076   37.72 2.95e-06 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.02123 on 4 degrees of freedom
#> Multiple R-squared:  0.9972,	Adjusted R-squared:  0.9965 
#> F-statistic:  1423 on 1 and 4 DF,  p-value: 2.949e-06
#> 
#> 
#> $`D:62.5:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5         6 
#>  0.010586 -0.015019 -0.005737  0.005026  0.014308 -0.009163 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -6.039366   0.070560  -85.59 1.12e-07 ***
#> x            0.133819   0.003127   42.79 1.78e-06 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.01308 on 4 degrees of freedom
#> Multiple R-squared:  0.9978,	Adjusted R-squared:  0.9973 
#> F-statistic:  1831 on 1 and 4 DF,  p-value: 1.782e-06
#> 
#> 
#> $`R:62.5:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5 
#> -0.005311  0.002885  0.005147  0.002293 -0.005015 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.561231   0.007487 -609.21 9.75e-09 ***
#> x            0.071846   0.001765   40.71 3.26e-05 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.005581 on 3 degrees of freedom
#> Multiple R-squared:  0.9982,	Adjusted R-squared:  0.9976 
#> F-statistic:  1658 on 1 and 3 DF,  p-value: 3.261e-05
#> 
#> 
#> $`T:62.5:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5 
#> -0.007294  0.004016  0.007028  0.003071 -0.006821 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.597876   0.005911 -777.89 4.69e-09 ***
#> x            0.084000   0.002413   34.81 5.21e-05 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.007631 on 3 degrees of freedom
#> Multiple R-squared:  0.9975,	Adjusted R-squared:  0.9967 
#> F-statistic:  1212 on 1 and 3 DF,  p-value: 5.212e-05
#> 
#> 
#> $`D:125:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5 
#> -0.006984 -0.017367  0.035309  0.009422 -0.020379 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.958416   0.067989  -72.93 5.68e-06 ***
#> x            0.090425   0.008369   10.80   0.0017 ** 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.02646 on 3 degrees of freedom
#> Multiple R-squared:  0.9749,	Adjusted R-squared:  0.9666 
#> F-statistic: 116.7 on 1 and 3 DF,  p-value: 0.001696
#> 
#> 
#> $`R:125:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5         6 
#>  0.022411 -0.040044 -0.007189  0.017367  0.034955 -0.027500 
#> 
#> Coefficients:
#>              Estimate Std. Error  t value Pr(>|t|)    
#> (Intercept) -4.752491   0.038321 -124.018 2.54e-08 ***
#> x            0.062455   0.007962    7.844  0.00143 ** 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.03331 on 4 degrees of freedom
#> Multiple R-squared:  0.939,	Adjusted R-squared:  0.9237 
#> F-statistic: 61.54 on 1 and 4 DF,  p-value: 0.001426
#> 
#> 
#> $`T:125:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5 
#> -0.019983  0.003381  0.019776  0.030237 -0.033411 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.489877   0.023801 -188.64 3.28e-07 ***
#> x            0.063647   0.009717    6.55  0.00723 ** 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.03073 on 3 degrees of freedom
#> Multiple R-squared:  0.9347,	Adjusted R-squared:  0.9129 
#> F-statistic: 42.91 on 1 and 3 DF,  p-value: 0.007234
#> 
#> 
#> $`D:250:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>         1         2         3         4         5 
#>  0.006580  0.001696 -0.006655 -0.018097  0.016477 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.207256   0.015900 -264.61 1.19e-07 ***
#> x            0.065509   0.004794   13.66 0.000848 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.01516 on 3 degrees of freedom
#> Multiple R-squared:  0.9842,	Adjusted R-squared:  0.9789 
#> F-statistic: 186.7 on 1 and 3 DF,  p-value: 0.0008479
#> 
#> 
#> $`R:250:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5 
#> -0.02283  0.04831 -0.03471  0.01581 -0.00658 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -4.56605    0.05110 -89.349 3.09e-06 ***
#> x            0.08301    0.01205   6.892  0.00626 ** 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.03809 on 3 degrees of freedom
#> Multiple R-squared:  0.9406,	Adjusted R-squared:  0.9208 
#> F-statistic:  47.5 on 1 and 3 DF,  p-value: 0.006259
#> 
#> 
#> $`T:250:2`
#> 
#> Call:
#> lm(formula = y ~ x)
#> 
#> Residuals:
#>        1        2        3        4        5        6 
#>  0.03506 -0.06422 -0.02039  0.06265  0.01744 -0.03054 
#> 
#> Coefficients:
#>             Estimate Std. Error  t value Pr(>|t|)    
#> (Intercept) -4.37787    0.03783 -115.711 3.35e-08 ***
#> x            0.09928    0.01250    7.944  0.00136 ** 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.05228 on 4 degrees of freedom
#> Multiple R-squared:  0.9404,	Adjusted R-squared:  0.9255 
#> F-statistic: 63.12 on 1 and 4 DF,  p-value: 0.001359
#> 
#> 
coef(L)
#>              y0       y0_lm      mumax         lag
#> D:0:1     0.018 0.012348195 0.20489854  1.83926074
#> R:0:1     0.011 0.008831178 0.25630432  0.85682072
#> T:0:1     0.009 0.005900763 0.31191925  1.35337257
#> D:0.24:1  0.023 0.014709250 0.18989888  2.35397718
#> R:0.24:1  0.017 0.014078785 0.05322855  3.54216424
#> T:0.24:1  0.016 0.011774984 0.21204548  1.44597029
#> D:0.49:1  0.031 0.025240660 0.13509722  1.52135628
#> R:0.49:1  0.009 0.007089855 0.13450009  1.77367653
#> T:0.49:1  0.011 0.007238015 0.29111544  1.43773978
#> D:0.98:1  0.010 0.006142502 0.31756203  1.53467001
#> R:0.98:1  0.009 0.007133502 0.09504288  2.44544713
#> T:0.98:1  0.008 0.006207722 0.30095478  0.84280940
#> D:1.95:1  0.010 0.005948446 0.33108133  1.56896521
#> R:1.95:1  0.009 0.006657909 0.09507972  3.17017248
#> T:1.95:1  0.009 0.006966166 0.28703658  0.89242838
#> D:3.91:1  0.010 0.006736215 0.30800048  1.28274758
#> R:3.91:1  0.010 0.007629770 0.08148875  3.31981323
#> T:3.91:1  0.009 0.007146418 0.27983373  0.82410818
#> D:7.81:1  0.012 0.008072406 0.28794897  1.37682390
#> R:7.81:1  0.009 0.007418187 0.09002548  2.14705786
#> T:7.81:1  0.009 0.005693913 0.31098355  1.47218990
#> D:15.63:1 0.012 0.008069409 0.25639239  1.54773087
#> R:15.63:1 0.010 0.006274882 0.10546795  4.41869234
#> T:15.63:1 0.009 0.004445029 0.24355111  2.89646916
#> D:31.25:1 0.014 0.003994867 0.23813934  5.26602198
#> R:31.25:1 0.010 0.006989825 0.11820348  3.02977233
#> T:31.25:1 0.010 0.001271757 0.24751212  8.33165669
#> D:62.5:1  0.011 0.004412020 0.11415189  8.00304535
#> R:62.5:1  0.009 0.007349083 0.10782755  1.87938124
#> T:62.5:1  0.009 0.008923245 0.07967661  0.10749618
#> D:125:1   0.010 0.009261622 0.08399986  0.91316728
#> R:125:1   0.009 0.008202567 0.06847905  1.35482968
#> T:125:1   0.008 0.008056028 0.08375782 -0.08332446
#> D:250:1   0.013 0.012453101 0.06500113  0.66121499
#> R:250:1   0.012 0.012231518 0.07184650 -0.26597509
#> T:250:1   0.011 0.010193109 0.06210864  1.22661516
#> D:0:2     0.014 0.008513917 0.27654723  1.79844598
#> R:0:2     0.013 0.010416112 0.24070074  0.92062666
#> T:0:2     0.013 0.010386601 0.26169927  0.85759785
#> D:0.24:2  0.020 0.011465880 0.20974366  2.65255497
#> R:0.24:2  0.017 0.014872222 0.04309883  3.10259405
#> T:0.24:2  0.019 0.015648960 0.20157002  0.96261599
#> D:0.49:2  0.009 0.005669556 0.29777802  1.55187340
#> R:0.49:2  0.011 0.009548033 0.07490036  1.88997935
#> T:0.49:2  0.019 0.015418355 0.21679102  0.96351005
#> D:0.98:2  0.010 0.005962000 0.31393257  1.64742097
#> R:0.98:2  0.010 0.008352086 0.07294759  2.46853567
#> T:0.98:2  0.011 0.008579133 0.29646046  0.83843370
#> D:1.95:2  0.011 0.006546358 0.28468758  1.82300320
#> R:1.95:2  0.018 0.016024459 0.05321911  2.18446881
#> T:1.95:2  0.015 0.011700006 0.26051234  0.95373938
#> D:3.91:2  0.009 0.005681560 0.31191925  1.47473670
#> R:3.91:2  0.012 0.009644836 0.06277920  3.48019692
#> T:3.91:2  0.013 0.010115396 0.27815520  0.90198114
#> D:7.81:2  0.016 0.010331283 0.24835941  1.76120684
#> R:7.81:2  0.010 0.007024046 0.09042528  3.90649229
#> T:7.81:2  0.028 0.022607499 0.16626824  1.28661289
#> D:15.63:2 0.008 0.004752007 0.30080497  1.73160202
#> R:15.63:2 0.013 0.011076649 0.06046648  2.64791550
#> T:15.63:2 0.011 0.005922191 0.25225990  2.45456677
#> D:31.25:2 0.012 0.003188892 0.24364624  5.43916975
#> R:31.25:2 0.010 0.005288865 0.10185696  6.25368505
#> T:31.25:2 0.011 0.001869233 0.19148771  9.25577533
#> D:62.5:2  0.008 0.002383069 0.13381865  9.04995173
#> R:62.5:2  0.011 0.010449190 0.07184650  0.71500793
#> T:62.5:2  0.010 0.010073206 0.08399986 -0.08683272
#> D:125:2   0.009 0.007024046 0.09042528  2.74132563
#> R:125:2   0.009 0.008630170 0.06245501  0.67184897
#> T:125:2   0.011 0.011222023 0.06364748 -0.31396304
#> D:250:2   0.015 0.014887160 0.06550931  0.11526718
#> R:250:2   0.012 0.010398970 0.08301448  1.72499895
#> T:250:2   0.013 0.012552110 0.09927729  0.35315817
rsquared(L)
#>     D:0:1.r2     R:0:1.r2     T:0:1.r2  D:0.24:1.r2  R:0.24:1.r2  T:0.24:1.r2 
#>    0.9832876    0.9824181    0.9934273    0.9920096    0.9897308    0.9795705 
#>  D:0.49:1.r2  R:0.49:1.r2  T:0.49:1.r2  D:0.98:1.r2  R:0.98:1.r2  T:0.98:1.r2 
#>    0.9418965    0.9992118    0.9933967    0.9758880    0.9842060    0.9837687 
#>  D:1.95:1.r2  R:1.95:1.r2  T:1.95:1.r2  D:3.91:1.r2  R:3.91:1.r2  T:3.91:1.r2 
#>    0.9593622    0.9971530    0.9779951    0.9784173    0.9938112    0.9910183 
#>  D:7.81:1.r2  R:7.81:1.r2  T:7.81:1.r2 D:15.63:1.r2 R:15.63:1.r2 T:15.63:1.r2 
#>    0.9640095    0.9972508    0.9669188    0.9576123    0.9953037    0.9608546 
#> D:31.25:1.r2 R:31.25:1.r2 T:31.25:1.r2  D:62.5:1.r2  R:62.5:1.r2  T:62.5:1.r2 
#>    0.9948442    0.9940203    0.9981896    0.9973064    0.9758310    0.9033606 
#>   D:125:1.r2   R:125:1.r2   T:125:1.r2   D:250:1.r2   R:250:1.r2   T:250:1.r2 
#>    0.9975305    0.9387857    0.8956263    0.9665499    0.9179874    0.9454368 
#>     D:0:2.r2     R:0:2.r2     T:0:2.r2  D:0.24:2.r2  R:0.24:2.r2  T:0.24:2.r2 
#>    0.9524807    0.9787556    0.9943384    0.9961940    0.9981098    0.9781243 
#>  D:0.49:2.r2  R:0.49:2.r2  T:0.49:2.r2  D:0.98:2.r2  R:0.98:2.r2  T:0.98:2.r2 
#>    0.9368668    0.9974027    0.9849125    0.9471733    0.9912935    0.9936525 
#>  D:1.95:2.r2  R:1.95:2.r2  T:1.95:2.r2  D:3.91:2.r2  R:3.91:2.r2  T:3.91:2.r2 
#>    0.9584714    0.9783713    0.9867135    0.9944789    0.9986206    0.9891576 
#>  D:7.81:2.r2  R:7.81:2.r2  T:7.81:2.r2 D:15.63:2.r2 R:15.63:2.r2 T:15.63:2.r2 
#>    0.9313411    0.9749470    0.9879793    0.9526920    0.9968320    0.9957528 
#> D:31.25:2.r2 R:31.25:2.r2 T:31.25:2.r2  D:62.5:2.r2  R:62.5:2.r2  T:62.5:2.r2 
#>    0.9975580    0.9897131    0.9971970    0.9978206    0.9981933    0.9975305 
#>   D:125:2.r2   R:125:2.r2   T:125:2.r2   D:250:2.r2   R:250:2.r2   T:250:2.r2 
#>    0.9749470    0.9389642    0.9346510    0.9841880    0.9405925    0.9404008 

results <- results(L)

library(lattice)
xyplot(mumax ~ conc|strain, data=results)

# }