x3-Functions Everywhere

Applied Statistics – A Practical Course

Thomas Petzoldt

2024-11-25

Functions bring life to the R language


sin(x), log(x), plot(x, y), summary(x), anova(lm.object), mean(x), monod(S, vmax, ks), simulate_phytoplankton(N, P, T, Zoo, ...)


Functions in R

  • have a name, followed by parenthesis ()
  • can have 1, 2 or more arguments (or no argument)
  • usually return something (an object)
  • can have side-effects (e.g. plotting)

What are functions


Parentheses and arguments

  • all functions are followed by parentheses and arguments
  • functions: log(x) par()
  • par <- c(a=5, b=3)

\(\rightarrow\) here, par is a variable, c() a function

Return value and/or side effect

  • sin(x), log(x), mean(x) are functions with return value
  • print(x), plot(x, y) are functions with side effect
  • hist(x) is a function with both, side effect and return value

Predefined and user-defined functions

  • predefined: available in R
  • user defined: users become programmers

Arguments of functions

Usage

dnorm(x, mean = 0, sd = 1, log = FALSE)
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
rnorm(n, mean = 0, sd = 1)
x, q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be …
log.p if TRUE, probabilities p are given as log(p).
lower.tail if TRUE (default), …

Arguments

  • required arguments: have no default
  • optional arguments: have default values
  • named arguments: argument mathing with = allows to specify arguments in arbitrary order
  • argument order: arguments can occur without names when in defined order
  • “…”: dots-arguments are passed down to other called functions

Examples


rnorm(10)                       # x given, other arguments = defaults
rnorm(10, 0, 1)                 # order matters
rnorm(n = 10, mean = 0, sd = 1) # use argument names
rnorm(10, sd = 1, mean = 0)     # named arguments in arbitrary order
rnorm(10, m = 5, s = 1)         # abbreviated arguments: = bad style
args(rnorm)                     # all arguments from rnorm

The ellipsis argument

plot(x, y, ...)
  • Some functions have a … argument, called “ellipsis”.
  • This means that additional arguments are passed to other functions.
  • Makes R flexible and extensible, but is sometimes tricky.
par(mfrow=c(1, 3))
x <- 1:10; y <- rnorm(10)
plot(x, y)
plot(x, y, type = "h")
plot(x, y, type = "s", col="red")

plot.default

plot(x, y = NULL, type = "p",  xlim = NULL, ylim = NULL,
     log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
     ann = par("ann"), axes = TRUE, frame.plot = axes,
     panel.first = NULL, panel.last = NULL, asp = NA, ...)

Object orientation

  • plot is a generic function
  • works automagic differently for different classes of objects
  • plot.default is the basic function
  • ... see ?par for additional graphical parameters, e.g.:
col color
bg background color for two-color symbols
pch symbol (plotting character)
cex size of symbol (character extension)
lty line type
lwd line width

A user-defined Monod function

  • describes substrate dependence of biochemical turnover
  • widely used in biochemistry and in models
  • e.g. organic matter turnover in wastewater treatment

\[ v = \frac{v_{max} \cdot S}{k_S + S} \]

par(mar=c(4,4,1,1))
par(mfrow=c(3, 1))
monod <- function(S, vmax, ks) {
  vmax * S / (ks + S)
}


S <- 1:10
P <- seq(0, 20, 0.1)
kP <- 5; mumax <- 1.2;

## different ways to call the function
plot(S, monod(S, 2, 2))                # simple call
plot(P, monod(S=P, vmax=mumax, ks=kP)) # named arguments
plot(P, monod(P, mumax, kP))           # argument position
  • names of caller and function can be different

Seasonal Light Intensity in Dresden


\[ I_t = 997 - 816 \cos(2 \pi t / 365) + 126 \sin(2 \pi t / 365) \]

Functions as a knowledge base

  • put knowledge in function and use it
  • forget what is inside
rad <- function(t) {
  ## fill equation in
}

t <- 1:365
plot(t, rad(t), type = "l")

Oxygen saturation in fresh and sea water

\[ c_{O_2, 100\%} = ... ? \]

o2sat <- function(t) {
  K <- t + 273.15 # Celsius to Kelvin
  exp(-139.34411 + (157570.1/K) - (66423080/K^2) +
   (1.2438e+10/K^3) - (862194900000/K^4))
}

o2sat(20)
[1] 9.092426


A more precise formula is found in package marelac

library(marelac)
gas_O2sat(t = 20, S = 0, method = "APHA")
[1] 9.092426

consult ?gas_O2sat for citations.

Local and global variables


Variables in a function are local:

  • not visible from outside.
  • no collisions with existing variables in the calling environment

Lexical Scoping

  • functions can see variables of the calling function
  • useful for interactive work
  • dangerous for (exported) functions in packages
  • except in special cases, e.g. for functions within functions

Local and global variables II


rm(list = ls()) # remove all objects
o2sat <- function(t) {
  K <- t + 273.15 # Celsius to Kelvin
  exp(-139.34411 + (157570.1/K) - (66423080/K^2) +
   (1.2438e+10/K^3) - (862194900000/K^4))
}

o2sat(20)
K

K <- 0
o2sat(20)

Now outcomment:

# K <- t + 273.15

and try again.

Exercise

Logistic growth


The logistic growth function describes saturated growth of a population abundance \(N_t\), dependent of an initial value \(N_0\), growth rate \(r\) and carrying capacity \(K\).

\[ N_t = \frac{K N_0 e^{rt}}{K + N_0 (e^{rt}-1)} \]

logistic <- function(t, r, K, N0) {
  K*N0*exp(r*t)/(K+N0*(exp(r*t)-1))
}


mu <- 0.1; K = 10; N0 = 0.1
times <- 1:100
plot(times,
     logistic(times, mu, K, N0))

Functional response types in Ecology

  • Holling type I \(P = \min(k \cdot N, P_{max})\)
  • Holling type II \(P = \frac{\alpha N}{1 + \alpha H N}\)
  • Holling type III \(P = \frac{\alpha N^b}{1 + \alpha H N^b}\)

with

\(P\) predation rate
\(N\) abundance of prey
\(P_{max}\) maximum predation rate
\(k\) a constant
\(\alpha\) attack rate
\(H\) handling time
\(b\) exponent \(>1\)
  • Write a function for each functional reponse type and plot it.
  • Write a universal function for all types.

Further Reading


More presentations

Manuals

More details in the official R manuals, especially in An Introduction to R

Videos

Many videos can be found on Youtube, at the Posit webpage and somewhere else.