fit_unimix.Rd
Fit mixture distributions to binned data with a maximum likelihood method, inspired by Venables and Ripley (2002)
fit_unimix( breaks, counts, parms, type = c("en", "enn", "ennn", "ennnn", "ennnnn", "n", "nn", "nnn", "nnnn", "nnnnn"), sd_min = 0, ... ) fit_n(breaks, counts, parms, sd_min = 0, ...) fit_en(breaks, counts, parms, sd_min = 0, ...) fit_nn(breaks, counts, parms, sd_min = 0, ...) fit_enn(breaks, counts, parms, sd_min = 0, ...) fit_nnn(breaks, counts, parms, sd_min = 0, ...) fit_nnnn(breaks, counts, parms, sd_min = 0, ...) fit_ennn(breaks, counts, parms, sd_min = 0, ...) fit_ennnn(breaks, counts, parms, sd_min = 0, ...) fit_nnnnn(breaks, counts, parms, sd_min = 0, ...) fit_ennnnn(breaks, counts, parms, sd_min = 0, ...)
breaks | upper class limits of the data |
---|---|
counts | frequency of observations |
parms | list of initial parameters for the mixture |
type | of the mixture distribution, e.g. 'enn' for exponential-normal-normal |
sd_min | lower boundary value for standard deviation and rate parameter |
... | additional arguments passed to |
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0
Bolker, Ben and R Development Core Team (2017) bbmle: Tools for General Maximum Likelihood Estimation. R package version 1.0.20. https://CRAN.R-project.org/package=bbmle