Preprocessing Parameters
feature_params-class.RdAn S4 class to store the parameters used in the preprocessing pipeline.
Slots
id_colCharacter vector specifying the name of the ID column.
target_colCharacter vector specifying the name of the target variable column.
split_colCharacter vector specifying the name of the column used for train/test split.
scale_optionCharacter string specifying the scaling option ("train", "test", "all").
scale_methodCharacter string specifying the scaling method ("scale", "norm").
mean_valsNumeric vector storing the mean values for z-score scaling.
sd_valsNumeric vector storing the standard deviation values for z-score scaling.
min_valsNumeric vector storing the minimum values for minmax normalization.
max_valsNumeric vector storing the maximum values for minmax normalization.
t_mean_valsNumeric vector storing the mean of transformed values for z-score scaling.
t_sd_valsNumeric vector storing the standard deviation of transformed values for z-score scaling.
t_min_valsNumeric vector storing the minimum values of transformed for minmax normalization.
t_max_valsNumeric vector storing the maximum values of transformed for minmax normalization.
fun_transformList of functions for data transformation.
fun_inverseList of functions for inverse data transformation.
transformedBoolean value, `TRUE` if object contains transformed values, `NA` if it is the result of an inverse transformation.