
Ordination and Clustering
Applied Statistics – A Practical Course

Thomas Petzoldt

2024-10-22

0.1 Introduction

The following demo demonstrates the reduction of a three dimensional data set into two
dimensions by principal component analysis (PCA) and nonmetric multidimensional scal-
ing.

The demo uses artificial data and a 3D plotting package, so the code may look somewhat
technical. But don’t worry. This is for demonstration of the main principles. Practical
demonstrations with real data will follow.

0.2 Packages and data set

First we load the required packages and a test data set multivar.csv. It consists of 3
clusters of correlated multivariate normally distributed data points that were generated
with the rmvnorm function. Each data subset has a separate mean value and a common
variance-covariance matrix 𝜎 that is created at random. A separate script is used to generate
the data.

library("rgl")
library("vegan")
library("vegan3d")

A <- read.csv("../data/multivar.csv")

0.3 Plotting

The data set has three columns, so we can, in principle, plot all column variables versus
each other, or use a 3D plot.

Note: The figure below can be rotated and zoomed with the mouse. Here we employ R’s 3D
graphics interface package rgl and the multivariate 3D visualisation package vegan3d.

1

gendata_rotate.R

nsamp <- nrow(A) / 3 # number of points in each of the 3 samples
mycolors <- rep(c("#e41a1c", "#377eb8", "#4daf4a"), each = nsamp)

par(mfrow=c(1,3))
plot(y ~ x, data=A, col=mycolors)
plot(y ~ z, data=A, col=mycolors)
plot(z ~ x, data=A, col=mycolors)

−6 −4 −2 0 2 4 6 8

−
6

−
4

−
2

0
2

4

x

y

−3 −2 −1 0 1 2 3

−
6

−
4

−
2

0
2

4

z

y

−6 −4 −2 0 2 4 6 8

−
3

−
2

−
1

0
1

2
3

x

z

We see that the colors overlap more or less in the 3 figures, so let’s try to improve this in the
3D view. The goal is to rotate the axes such, so that the colored dots form well separated
clusters.

ordirgl(A, type="p", ax.col = "black", col=mycolors, box=FALSE)
view3d(theta = 5, phi = 15, fov=30, zoom=0.7)
axes3d(labels=FALSE)

2

We see that the coordinate axes can be rotated in the direction of maximum variance of the
data, so that overlap between data points is minimized. We can try to do this by hand, or
let the computer do this. This is then calles a “principal components analysis” (PCA).

0.4 Principal components

R contains several functions for principal components analysis, for example princomp and
prcomp in the stats package or function rda in the vegan package. The result is, that
the coordinate system is rotated in the direction om maximum variance, using Eigen value
calculations. The resulting “synthetic” new dimensions are then the principal components.

Each principal component represents then a specific fraction of the total variance of the
data in ascending order. This can be plotted as bar chart or printed with summary.

pc <- prcomp(A)
plot(pc)
box()

3

pc
V

ar
ia

nc
es

0
2

4
6

8
10

summary(pc)

Importance of components:
PC1 PC2 PC3

Standard deviation 3.2753 1.6495 1.1778
Proportion of Variance 0.7231 0.1834 0.0935
Cumulative Proportion 0.7231 0.9065 1.0000

The objects in the rotated coordinate axes can then be visualized with function biplot in
2 dimensions (shown later with real data) or with ordirgl in 3D. Function view3d rotates
the plot in the direction of PC1 and PC2, but you can use the mouse to see that there is
still a 3rd dimension.

pc <- prcomp(A)
ordirgl(pc, type="p", display="sites",

ax.col = "black", col=mycolors)
view3d(theta = 0, phi = 0, fov=0, zoom=0.7)
axes3d()

4

0.5 Nonmetric multi-dimensional scaling (NMDS)

The PCA is a very useful technique as it reduces dimensions without bias, but as we have
seen, large proportions of information may still be found at higher dimensions.

This is, where the nonmetric dimensional scaling comes into play. Here, we can request a
number of dimensions 𝑘, typically 𝑘 = 2 or 𝑘 = 3 and then the computer tries hard to
squeeze the information as much as possible into these dimensions. The aim is, that the
distances between in all dimensions are represented in two or three dimensions only. Though
it is done in an iterative way, it is clear, that this is not perfectly possible and will introduce
considerable distortion, called stress.

mds <- metaMDS(A, distance="euclid", scale=TRUE, autotransform = FALSE, k=2)

'comm' has negative data: 'autotransform', 'noshare' and 'wascores' set to FALSE

Run 0 stress 0.07782409
Run 1 stress 0.07783593
... Procrustes: rmse 0.0003832902 max resid 0.003881955
... Similar to previous best
Run 2 stress 0.07783593
... Procrustes: rmse 0.0003820572 max resid 0.003870403
... Similar to previous best
Run 3 stress 0.07783593
... Procrustes: rmse 0.0003825397 max resid 0.003873068
... Similar to previous best

5

Run 4 stress 0.07783594
... Procrustes: rmse 0.0003831796 max resid 0.003880927
... Similar to previous best
Run 5 stress 0.0972286
Run 6 stress 0.09722862
Run 7 stress 0.0778241
... Procrustes: rmse 1.813474e-05 max resid 0.0001852594
... Similar to previous best
Run 8 stress 0.07783594
... Procrustes: rmse 0.0003829563 max resid 0.003880011
... Similar to previous best
Run 9 stress 0.0778241
... Procrustes: rmse 8.824823e-06 max resid 8.264184e-05
... Similar to previous best
Run 10 stress 0.09722861
Run 11 stress 0.07782409
... New best solution
... Procrustes: rmse 1.215176e-05 max resid 0.000132881
... Similar to previous best
Run 12 stress 0.07783593
... Procrustes: rmse 0.000379079 max resid 0.003844473
... Similar to previous best
Run 13 stress 0.1438851
Run 14 stress 0.07783593
... Procrustes: rmse 0.0003797309 max resid 0.003851559
... Similar to previous best
Run 15 stress 0.09722252
Run 16 stress 0.07782409
... Procrustes: rmse 1.41609e-05 max resid 0.0001187894
... Similar to previous best
Run 17 stress 0.07782411
... Procrustes: rmse 2.292863e-05 max resid 0.0002529556
... Similar to previous best
Run 18 stress 0.0778241
... Procrustes: rmse 1.836163e-05 max resid 0.0001763765
... Similar to previous best
Run 19 stress 0.07782409
... Procrustes: rmse 4.22707e-06 max resid 3.159402e-05
... Similar to previous best
Run 20 stress 0.09722253
*** Best solution repeated 7 times

The resulting stress and the representation of distances in two (or three) dimensions can
then be shown in a so-called stressplot. Here, one should not overestimate the hich 𝑟2 values,
that are always big, even in bad cases. The shape of the step-line does not matter much

6

either. However, the value of stress is most important and the data points should be close
to the red line.

stressplot(mds)

0 2 4 6 8 10 12 14

0
4

8
12

Observed Dissimilarity

O
rd

in
at

io
n

D
is

ta
nc

e Non−metric fit, R2 = 0.994
Linear fit, R2 = 0.973

The stress itself shuld be small. As a rule of thumb, a stress value of > 0.2 means that the
NMDS was not successful, stress < 0.1 is considered as sufficient, < 0.05 as good, < 0.025
as very good and ≈ 0 as perfect.

mds

Call:
metaMDS(comm = A, distance = "euclid", k = 2, autotransform = FALSE, scale = TRUE)

global Multidimensional Scaling using monoMDS

Data: A
Distance: euclidean

Dimensions: 2
Stress: 0.07782409
Stress type 1, weak ties
Best solution was repeated 7 times in 20 tries
The best solution was from try 11 (random start)
Scaling: centring, PC rotation
Species: scores missing

xyz <- as.data.frame(scores(mds, display="sites"))
xyz$. <- 0
ordirgl(xyz, type="p", ax.col = "black", col=mycolors)

7

view3d(theta = 0, phi = 0, fov=0, zoom=0.7)
axes3d(labels=FALSE, expand=1.5)

Here, stress is < 0.1. This is o.k., so that we now can have a look at the 2D representation.
The figure is again technically 3D, so use the mouse to see that the data are now at a
plane.

0.6 Cluster analysis

The methods discussd so far try to map high dimensional structures to lower dimensions
as good as possible, but there is still variation left that is not shown, either because it is
in a higher dimension as in PCA or because the mapping is “under stress” (NMDS). This
means that points shown closely together may not as similar as they appear in the projection
plane.

Cluster analysis takes another route. It shows the distance, not the location. Many different
cluster analysis methods exist, here we show just an example of hierarchical clustering with
“ward.D2” as agglomeration scheme. More about this will be discussed later.

hc <- hclust(dist(A), method="ward.D2")
plot(hc)

8

10
8

14
4

12
0

13
9

13
8

11
4

11
8 58 13
5 91 12
5

11
6

10
2

13
3

10
3

12
8

10
7

11
3

12
7

14
9

10
4

14
2

10
6

11
2

14
0

11
5

14
3

12
3

11
7

14
6

10
5

11
1

14
7

13
2

13
0

13
4

11
0

13
1

14
8

10
1

15
0

12
6

12
1

14
1

12
9

14
5

11
9

12
2 29 35 5 25 3
0 41 48 50
2 8 46 1
3

11 24 27 74 60 66 3
9

21 72 5
7

37 16 17 78 92 3
8

53 23 36
4

22 1 9 3
3 47 40 32 34 1
4 61 82 31 49 19 84 43 45 1
5

26 42 2
0 6 10 7 18
3 28 4
4 64 6
5

71 76 68 69 6
2 97 55

10
9

13
6 59 98 52 79 81 93 5
6 63 12 89 6
7 70 73 90 9
5

13
7 75 12
4

86 99 9
4 96 51 85 88 8
0 87 5
4

10
0 77 83

0
20

40

Cluster Dendrogram

hclust (*, "ward.D2")
dist(A)

H
ei

gh
t

The result can also be combined with PCA or NMDS, here again a 3D visualization.

hc <- hclust(dist(A), method="ward.D2")
ordirgltree(ord=mds, cluster=hc, col=mycolors)
axes3d(expand=1.5)

9

The plot can again be rotated and zoomed in. The x- and y axes show the NMDS coordinates
and the y axis the euclidean distance. Two-dimensional plots are of course also possible,
practical examples will be given later.

1 Glossary

1.1 Distance and dissimilarity measures

1.1.1 Quantitative form

with 𝑥𝑖𝑗, 𝑥𝑖𝑘 abundance of species 𝑖 at sites (𝑗, 𝑘).

Euclidean distance:

𝑑𝑗𝑘 = √∑(𝑥𝑖𝑗 − 𝑥𝑖𝑘)2

Manhattan distance:
𝑑𝑗𝑘 = ∑ |𝑥𝑖𝑗 − 𝑥𝑖𝑘|

10

Gower distance:
𝑑𝑗𝑘 = 1

𝑀 ∑ |𝑥𝑖𝑗 − 𝑥𝑖𝑘|
max(𝑥𝑖) − min(𝑥𝑖)

Bray-Curtis dissimilarity:

𝑑𝑗𝑘 = ∑ |𝑥𝑖𝑗 − 𝑥𝑖𝑘|
∑ (𝑥𝑖𝑗 + 𝑥𝑖𝑘)

1.1.2 Binary form

The binary form is applicable to binary and factor variables, where:

• 𝐴, 𝐵 = numbers of species on compared sites
• 𝐽 = (joint) is the number of species that occur on both compared sites
• 𝑀 = number of columns (excluding missing values)

Euclidean:
√

𝐴 + 𝐵 − 2𝐽
Manhattan: 𝐴 + 𝐵 − 2𝐽
Gower: 𝐴+𝐵−2𝐽

𝑀

Bray-Curtis: 𝐴+𝐵−2𝐽
𝐴+𝐵

Jaccard: 2𝑏
1+𝑏 with 𝑏 = Bray-Curtis dissimilarity

1.1.3 Applications

Additional distance measures and application suggestions are found in the vegdist help
page.

11

https://www.rdocumentation.org/packages/vegan/versions/2.4-2/topics/vegdist

	Introduction
	Packages and data set
	Plotting
	Principal components
	Nonmetric multi-dimensional scaling (NMDS)
	Cluster analysis
	Glossary
	Distance and dissimilarity measures
	Quantitative form
	Binary form
	Applications

