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1 Introduction

The growth rate of a population is a direct measure of fitness. Therefore, determination
of growth rates is common in many disciplines of natural and human sciences, business
and engineering: ecology, pharmacology, wastewater treatment, and economic growth. The
following example gives a brief introduction, how growth models can be fitted wit R.

2 Material and methods

2.1 Data set

The example data set was taken from a growth experiment in a batch culture with Microcystis
aeruginosa, a cyanobacteria (blue green algae) species. Details of the experiment can be
found in Jahnichen et al. (2001).

## time (t)

x <- c(0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

## Algae cell counts (per ml)

y <- c(0.88, 1.02, 1.43, 2.79, 4.61, 7.12,
6.47, 8.16, 7.28, 5.67, 6.91) * 1le6

2.2 Methods

Parametric models are fitted using nonlinear regression according to the method of least
squares. Data analysis is performed using the R software of statistical computing and
graphics (R Core Team, 2021) and the nls function from package stats. An additional
analysis is performed with packages growthrates (Petzoldt, 2020) and FME (Soetaert &
Petzoldt, 2010).

To get a suitable curve, we need a model that fits the data and that has identifiable param-
eters. In the following, we use the logistic growth model (Verhulst, 1838):

K- N,
(No + (K — Ny) - exp(—r - x))

and the Baranyi-Roberts model (Baranyi & Roberts, 1994), explained later.



3 Results

After some first attempts (not shown) it turned out that convergence can be difficult and
required good start values.

To improve stability of the convergence, the tolerances of the optimization algorithm should
be adapted to the scale on the data. As an alternative, we can also re-scale the data to a
more common range, for example between 1072 and 103. This is a rule of thumb, similar to
what we usually do with measured quantities if we apply unit prefixes like micro, milli, kilo,
mega:

yy <=y * le-6

To get a first impression of the data and at the same time, obtain good start parameters for
the logistic model, we plot the data in both, with linear and logarithmic y-axis.

We see that the first points show the steepest increase, so we can estimate a start value of
the exponential growth rate r from the log-scaled data. The straight line between two data
points with steep increase indicates the initial exponential phase. Here we use simply points
number 1 and 5:

par (mfrow=c(1, 2))

plot(x, yy)

plot(x, log(yy))

r <- (log(yy[5]) - log(yyl[1l)) / (x[5] - x[1])
abline(a = log(yyl[1]), b=r)

0 - (@ o | (@
o ° 5 « © ooo
(@] 1
O - o g
> o
E: < o E? -
AN ° | ©
o
oOO o | ©
[ [ [ [ [ [ [ [ [ [
0O 5 10 15 20 0O 5 10 15 20
X X

This way, we have a heuristics for all start parameters:

e 7: steepest increase of y in log scale
e K: maximum value
o N,: initial population (first value)

3.1 Nonlinear regression with “nls”
3.1.1 Logistic Growth
We define now a used defined function for the logistic and this by plotting the function with

the start values (blue line). Then we can use function nls (nonlinear least squares) to fit
the model:



## function definition
f <- function(x, r, K, NO) {K /(1 + (K/NO - 1) * exp(-r *x))}

## check of start values
plot(x, yy, pch=16, xlab="time (days)", ylab="algae (Mio cells)")
lines(x, f(x, r=r, K=max(yy), NO=yy[1]), col="blue")

## monlinear regression
pstart <- c(r=r, K=max(yy), NO=yy[1])
fit_logistic <- nls(yy ~ f(x, r, K, NO), start = pstart, trace=FALSE)

x1 <- seq(0, 25, length = 100)
lines(x1, predict(fit_logistic, data.frame(x = x1)), col = "red")
legend("topleft",

legend = c("data", "start parameters", "fitted parameters"),

col = c("black", "blue", "red"),
1ty = c(0, 1, 1),
pch = c(16, NA, NA))
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summary (fit_logistic)
Formula: yy ~ f(x, r, K, NO)
Parameters:
Estimate Std. Error t value Pr(>|t])
T 0.5682 0.1686 3.371 0.00978 x**
K 7.0725 0.4033 17.535 1.14e-07 **x
NO 0.1757 0.1861 0.944 0.37271
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8118 on 8 degrees of freedom

Number of iterations to convergence: 14
Achieved convergence tolerance: 4.018e-06



(Rsquared <- 1 - var(residuals(fit_logistic))/var(yy))

[1] 0.931732

We see that the fit converged and the red line approximates the data, but we can also see
that the model fit is far below the data at the beginning. This will be improved in the next
section.

3.1.2 Baranyi-Roberts model

The logistic function assumes, that growth starts exponentially from the beginning and then
approaches more and more saturation. In reality, organisms need often some time to adapt
to new conditions, and we can observe a delay at the beginnig. This delay is called lag-phase.
Several models exist to describe such behavior, where the Baranyi-Roberts model (Baranyi
& Roberts, 1994) is one of the most commonly used. Its parameters are similar to the logistic
function with one additional parameter h for the lag. Following its mathematical equation
(not shown here), we can implement it a suser-defined function in R:

baranyi <- function(x, r, K, NO, h0) {
A <- x + 1/r * log(exp(-r * x) + exp(-h0) - exp(-r * x - hO))
y <- exp(log(NO) + r * A - log(1l + (exp(r * A) - 1)/exp(log(K) - log(N0))))

y
}

If we assume a lag time hy = 2, we can try to fit it and compare it with the logistic model

pstart <- c(r=0.5, K=7, NO=1, h0=2)
fit_baranyi <- nls(yy ~ baranyi(x, r, K, NO, hO), start = pstart, trace=FALSE)

plot(x, yy, pch=16, xlab="time (days)", ylab="algae (Mio cells)")
lines(x1l, predict(fit_logistic, data.frame(x = x1)), col = "red")
lines(xl, predict(fit_baranyi, data.frame(x = x1)), col = "forestgreen", lwd=2)

legend("topleft",
legend = c("data", "logistic model", "Baranyi-Roberts model"),

col = c("black", "red", "forestgreen"),
1ty = c(0, 1, 1),
pch = c(16, NA, NA))
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It is obvious, that it fits much better.

3.2 Growth curve fitting with R package “growthrates”

As growth curves are of fundamental importance in science and engineering, several R
packages exist for this problem. Here we show one of these packages growthrates (Petzoldt,
2020). Details can be found in the package documentation.

3.2.1 Maximum growth rate as steepest increase in log scale

The package contains a method “easy linear” to find the steepest linear increase. It is a fully
automatic method employing linear regression and a search routine. Details of the algorithm
are found in Hall et al. (2014).

The following shows the phase of steepest increase, the exponential phase, identified by linear
regression using the data points with the steepest increase:

library("growthrates")

par (mfrow=c(1, 2))

fit_easy <- fit_easylinear(x, yy)
plot(fit_easy, main="linear scale")
plot(fit_easy, log="y", main="log scale")


https://tpetzoldt.github.io/growthrates/doc/Introduction.html
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coef (fit_easy)

yO yO_1m mumax lag
0.8800000 0.5838576 0.2528382 1.6226381

3.2.2 Logistic growth

Now we can take the start parameters from above and function fit_growthmodel using the
grow_logistic function, that is pre-defined in the package. We can also use a specific plot
function from the package

pstart <- c(mumax=r, K=max(yy), yO=yy[1])
fit_logistic2 <- fit_growthmodel(grow_logistic, p=pstart, time=x, y=yy)
plot(fit_logistic2)
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3.2.3 Baranyi-Roberts model

We see again that the model fits not very well at the beginning because of the lag phase.
Therefore, we empoy again an extended model e.g. the Baranyi model.



A start value for the lag phase parameter h, can be approximated from the “easylinear”
method:

coef (fit_easy)

yO yO_1m mumax lag
0.8800000 0.5838576 0.2528382 1.6226381

hO <- 0.25 * 1.66
pstart <- c(mumax=0.5, K=max(yy), yO=yy[1], hO0=h0)

fit_baranyi2 <- fit_growthmodel (grow_baranyi, p=pstart, time=x, y=yy)
summary (fit_baranyi2)

Parameters:
Estimate Std. Error t value Pr(>|t])
mumax 0.8477 0.3681 2.303 0.0547 .
K 6.9969 0.3499 19.999 1.96e-07 *x*x*
yo 0.9851 0.5250 1.876 0.1027
ho 4.1220 3.0894 1.334 0.2239
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7583 on 7 degrees of freedom

Parameter correlation:

mumax K yO ho
mumax 1.0000 -0.3607 0.4600 0.9635
K -0.3607 1.0000 -0.1030 -0.2959
yo 0.4600 -0.1030 1.0000 0.6477
ho 0.9635 -0.2959 0.6477 1.0000

The summary shows the parameter estimates, their standard error and a significance level.
However, we should not take the significance stars too seriously here. If we would, for
example, omit the “nonsignificant” parameters yO and hO, or set it to zero, the models would
not work anymore. We see that some parameters correlate, especially h0 and y0. This can,
in principle, indicate identification problems, but this dod not happen here, fortunatly.

Finally, we plot the results in both, linear and log scale:

par (mfrow=c(1, 2))
plot(fit_logistic2, ylim=c(0, 10), las=1)
lines(fit_baranyi2, col="magenta")

points(x, yy, pch=16, col="red")

## log scale

plot(fit_logistic2, log="y", ylim=c(0.2, 10), las=1)
points(x, yy, pch=16, col="red")

lines(fit_baranyi2, col="magenta")



legend("bottomright",
legend = c("data", "logistic model", "Baranyi model"),
col = c("red", "blue", "magenta"),
1ty = c(0, 1, 1),

pch = c(16, NA, NA))
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4 Discussion

We see clear differences between the model fits, both quantitatively and qualitatively. The
four-parameter-Baranyi model fitted better than the logistic, especially at the beginning.
This results from the lag phase of cell counts, that the logistic model cannot describe. We
see this especially in the log-transformed plot. Whereas both functions have sigmoidal shape
in the left (linear) plot, only the Baranyi function remains sigmoidally with log-transformed
y axis (right plot, magenta). In contrast, growth is assumed to start exponentially in the
logistic model, so that it starts approximately linear in the log scale (blue line, right).
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