03-Discharge of River Elbe: Date and Time
Computation, Data Management and
Plotting with R

2024-11-15

1 Introduction and prerequisites

The following practical example demonstrates how data in “long format” can be analysed
with R. It builds up on the previous exercise about date and time computation and pivot
tables with LibreOffice.

1.1 Software prerequisites

The example assumes that recent versions of R and RStudio are installed, together with
some add-on packages dplyr, tidyr, readr, lubridate and ggplot2. The packages should
already be available in the computer pool of the university, otherwise install it over the
“Packages” pane in RStudio or from the command line:

If all packages are installed, we need to load it to the active session with

library(readr) # modernized functions to read rectangular data like csv
library(dplyr) # the most essential tidyverse packages
library(tidyr) # contains for example pivot tables

library(lubridate) # a tidyverse package for dates
library(ggplot2) # high level plotting with the grammar of graphics

The examples were tested with R versions 4.2.1 — 4.4.2.

1.2 The data set

The data set consists of daily measurements for discharge of the Elbe River in Dresden (daily
discharge sum in m3s~!). The data were kindly provided by the German Federal Institute
for Hydrology (BfG)!.

Please read the information file elbe_ info.txt about data source and copyright before down-
loading the data file “data.csv”. The data set ist then available in the course folder or from
https://github.com/tpetzoldt/datasets/blob/main/data/.

!Data Source: Federal Waterways and Shipping Administration (WSV), provided by the Federal Institute
for Hydrology (BfG).

https://github.com/tpetzoldt/datasets/blob/main/data/elbe_info.txt
https://github.com/tpetzoldt/datasets/blob/main/data/

1.3 Overview

We first learn how to import data to R, then we will do date and time conversion and create
some plots. After that we learn how to aggregate, analyse and reformat the data set. A final
outlook gives an impression how to use pipelines and high level plotting with the ggplot
package.

2 Data Import to R

2.1 Import of spreadsheet and text files

R can access spreadsheet tables and data bases directly using packages like readxl for Excel
files. It can also read LibreOffice files and data bases.

Here we want to make it simple and just read the data from a universal exchange format
(.txt or .csv) that can be shared between all systems. In our example, we use a csv-file
(comma separated values), where the first row is the table header of unique variable names.
The variable names must start with a letter and should not contain special characters,
spaces etc. Additional meta information (e.g. source of data) and measurement shold be
documented separately, for example in a separate file README.txt.

The example file elbe.csv contains daily discharge of the Elbe River in m3s~! from gauging
station Dresden, river km 55.6 from the Federal Waterways and Shipping Administration
(WSV) and where provided by the Federal Institute for Hydrology (BfG).

The third column “validated” indicates whether the values were finally approved by WSV
and BfG. Data from the 19th century are particularly uncertain. Please consult the file
elbe_info.txt for details.

1989-01.05 565 TRUE
19890106 519 TRUE
19890107 522 TRUE
19890108 524 TAUE
19890109 544 TRUE
1989-0110 539 TRUE

Figure 1: RStudio import assistant

2.2 Input method 1: Use the import dataset wizard of RStudio

1. First, download the file elbe.csv and store it to your working directory.
2. Now Open RStudio and Select: File — Import Dataset — From Text (readr).

3. Open the file and you will see the import dataset assistant. Select the correct settings
for your file and choose an appropriate name (e.g. elbe) for the data frame in R.

2.3 Input method 2: Read data directly from R

1. Navigate to the data file with the “files pane” (bottom right in Rstudio by default),
2. If you cannot find the file easily, use the dots (...) of the file pane.
3. Select: More — Set as Working Directory.

4. Run the following commands in R:

library("readr")
elbe <- read_csv("elbe.csv")

This works if the data format is a true csv (comma separated values) file with English
decimal dot “” for the numbers and “,” for the column separator. If the file format is
different, we may use read.table, a more flexible function that allows to specify the column
separator decimal.

Note: for the exercise, one of the above methods is sufficient, either the import wizard or
read_csv. The command line method is advantageous if a file is read several times or if
several files need to be imported.

3 Data management with R — the modern way

In the last years, a new series of packages, called the “tidyverse” appeared, leading to a
small revolution how to work with data. We start with the Elbe data set and date and some
time computation. The tidyverse methods look intriguingly simple, so that many people like
it. Often, there is also a classical way in “base R” that is sometimes still needed. Experts
know both.

3.1 Date and time conversion

In the following we extend the elbe data frame by adding information about the day, month,
year and day of year. Here function mutate adds additional columns, or modifies existing if
the column names exist.

Note also that the day of year function in the date and time package lubridate is named
yday. Details about date and time conversion can be found in a cheatsheet available from
https://rstudio.github.io/cheatsheets/lubridate.pdf

elbe <- mutate(elbe,

date = as.Date(date), # may be redundant if read_csv was used
day = day(date),

month = month(date),

year = year(date),

doy = yday(date))

Now, have a look at the “Global Environment” pane and inspect the data structure of the
elbe data frame.

https://rstudio.github.io/cheatsheets/lubridate.pdf

3.2 Basic plotting with R’s base plot
The full time series can be plotted using the date as argument for the x-axis and discharge
for the y-axis. The $ sign indicates from which column of the elbe-table data are taken.

The "1" indicates line plots.

plot(elbe$date, elbe$discharge, type="1")

The same can be done with a so-called formula syntax. Here y and x are given in opposite
order, separated with a ~ (tilde sign). It can be read as “y as a function of x”. The
formula syntax allows to specify the data as a separate argument.

plot(discharge ~ date, data=elbe, type="1")

discharge
2000

0
I

1990 2000 2010 2020

date

The formula syntax has additional benefits, for example a subset argument:

plot(discharge ~ doy, data=elbe, subset = year==2002, col="blue", type="1")
lines(discharge ~ doy, data=elbe, subset = year==2003, col="red")

Exercise: Plot 4 years with 4 different colors, 2 wet and 2 dry years.

3.3 Histograms

Histograms show the distribution of the data. Compare the shape of following three:

1. Histogram with untransformed data

2. Histogram with log-transformed data

3. Histogram with log-transformed data, where a certain baseflow is subtracted before
taking the log.

hist(elbe$discharge)
hist(log(elbe$discharge))
hist(log(elbe$discharge - 0.9 * min(elbe$discharge)))

Exercises:

1. Discuss, which of the three histograms best describe discharge distribution.
2. Repeat the plot with smaller classes, e.g. hist (elbe$discharge, breaks=50).

3.4 Boxplots
Boxplots are a very compact way to visualize the distribution of data:

boxplot(elbe$discharge)

Exercise: Create boxplots for:

1. log-transformed discharge,

2. log-transformed value of discharge - baseflow.

3. Interpret the results: What do the “middle line”, the box, the whiskers and the extreme
values tell us?

4. Discuss the “outliers”: how many, at which side and if they are really “outliers”.

3.5 Cumulative sums

Annual cumulative sum plots are a hydrological standard tool used by reservoir managers.
We can use the R function cumsum, that by successive cumulation converts a sequence of:
T, Ty, T3, Ty, ... iNtO

(@), (@1 4+ @3), (21 + Ty + @3), (21 + T3 + Tg + 3y), ...

If we just use cumsum for daily discharge (in m3s~!) and multiply it with the number of

seconds per day / 1e6, we get a cumulative sum in Mio m? over all years:

elbe$cum <- cumsum(elbe$discharge) * 60*60*24 / 1e6
plot(elbe$date, elbe$cum, type="1", ylab="Mio m~3")

However, cumulation is more commonly done per year, i.e. each year should start with the
discharge from a given start day. In the following, let’s start with 1st of January, experts
may consider to modify the code, to use the German hydrological year.

one_year <- subset(elbe, year == 2000)

one_year$cum <- cumsum(one_year$discharge) * 60%x60*24 / 1le6
plot(one_year$date, one_year$cum, type="1", ylab="Mio m~3")

Here, a steep increase shows a wet period, a flat curve indicates a dry period.

4 Summarizing and pivoting data

4.1 Summaries and cross-tabulation

Here we use the tidyverse method summarize, after grouping with group_by. It is, compared
to the classical aggregate-function i R more powerful and much easier to use:

calculate annual mean, minimum, maxTimum
elbe_grouped <- group_by(elbe, year)

totals <- summarize(elbe_grouped,
mean = mean(discharge),

min(discharge),

max(discharge))

min

max
totals

Exercise: Use the above method to compute annual total discharge sums and monthly
average discharge values.

4.2 A standard pivot table

Tidyverse provides also tools for the conversion of data base tables (long data format) into
cross-tables (wide data format) and vice versa. This functionality changed several times in
the last years, so you may see functions like melt and cast or gather and spread doing
more or less the same, but with different syntax. The most recent development suggests the
two functions pivot_wider and pivot_longer for this purpose.

Its first argument is a data base table, the other arguments define the structure of the desired
crosstable.

Here id_cols is the name of a column in a long table that will become the rows, names_from
indicates where the names of the columns are taken from and values_from the column
with the values for the cross table. If more than one value is possible for a row x column
combination, an optional values_fn can be given.

elbe_wide <- pivot_wider(elbe,
id_cols = doy,
names_from = year,
values_from = discharge,

#values_fn = mean

elbe_wide

Exercise: Create a crosstable for monthly max. discharge over all years.

4.3 Back-conversion of a crosstable into a data base table
The inverse case is also possible, e.g. the conversion of a cross table into a data base table.
It can be done with the function pivot_longer. The column of the id.vars variable(s) will

become identifier(s) downwards.

pivot_longer(elbe_wide, names_to="year", cols=as.character(1989:2019))

5 Outlook: Pipelined data analysis with dplyr and ggplot

The following examples are intended as an outlook, how modern data management packages
from the so-called “tidyverse” can be combined to pipeline an analysis in a compact way.
The examples combine the data manipulation package dplyr with the plotting package
ggplot2 and the so-called pipeline |> operator that “pipes” the outcome of one function to
the next.

All packages have in common to rely on long database tables, the “tidy data format”.

A note if you read this at the beginning of your R experience: pipelines and tidyverse
are very elegant and the examples below give an impression what is possible with very few
commands. That opens up a whole world of possibilities. It takes some time to understand
everything, but the general concept is easy to grasp.

A short introduction about pipelines is found here and some more on www.r-bloggers.com.

5.1 Minimum-maximum plot with summarize and ggplot2

Read data
elbe <- read.csv("elbe.csv")

do everything in one pipeline:
doy calculation [> grouping [> min, maz, mean [> melt to long format [>
plotting
elbe |>
mutate (doy = yday(date)) |[>
group_by(doy) |>
summarize (max = max(discharge),
mean = mean(discharge),
min = min(discharge)) |[>

pivot_longer(cols = c("min", "mean", "max"),
names_to = "statistic",
values_to = "discharge") |[>

ggplot (aes(doy, discharge, color = statistic)) + geom_line()

4000 -
statistic
3000~
a max
S
& 2000- B ncan
© —— min
1000 -
Eatnasiiin R
O- 1 1 1 1
0 100 200 300
doy

https://tpetzoldt.github.io/elements/slides/x4-pipes-intro.html
https://www.r-bloggers.com/2017/12/pipes-in-r-tutorial-for-beginners/

5.2 Cumulative sums for all years

Cumulative sums are a standard tool used by hydrologists and reservoir managers. They
allow to detect easily dry and wet years and periods.

If we just use cumsum, we get a cumulative sum over all years:

elbe |[>
mutate(doy = yday(date), year = year(date)) |[>
#filter(year %inj 2000:2010) [>
group_by(year = factor(year)) [>
mutate (cum_discharge = cumsum(discharge) * 60*60%*24) [>
ggplot (aes(doy, cum_discharge, color = year)) + geom_line()

Exercises:

1. Which year was the wettest, which one the driest year in total? Find a year with
dry spring and wet summer. Use the outcommented filter to reduce the number of
simultanaeous lines.

2. Modify the commands so that the hydrological year is shown. The German hydrological
year goes from 1st November to 31st October of the following year. Other countries
have different regulations.

	Introduction and prerequisites
	Software prerequisites
	The data set
	Overview

	Data Import to R
	Import of spreadsheet and text files
	Input method 1: Use the import dataset wizard of RStudio
	Input method 2: Read data directly from R

	Data management with R – the modern way
	Date and time conversion
	Basic plotting with R's base plot
	Histograms
	Boxplots
	Cumulative sums

	Summarizing and pivoting data
	Summaries and cross-tabulation
	A standard pivot table
	Back-conversion of a crosstable into a data base table

	Outlook: Pipelined data analysis with dplyr and ggplot
	Minimum-maximum plot with summarize and ggplot2
	Cumulative sums for all years

